帮忙举几个黄金分割在生活中的应用的例子~ 外汇黄金分割使用技巧视频
古希腊雕塑大多把人体比例规范被确定为7个头长,到后期又确定为8个头长。同时,几何学中的黄金分割又被认为是美的比例运用到美术创作中。如希腊雕塑的典范作品《持矛者》塑造了一个体格强壮、动作从容的青年战士的形象,从这个形象上体现了作者对“黄金分割”这一最和谐的人体比例关系的探索和应用。 除了造型外,绘画中的混色原理也是通过比例而获得美的一种绝妙原理。两种原色调合后会产生出间色,如红与黄调和出橙色, 而这橙则根据红、黄二色所占的不同比例, 可呈现出不同的色相来。为调配出一种间色所使用的两种原色当然不是等量的, 而人们习惯采用的调配当量往往是: 黄3—红5—青8,即:黄3+ 红5= 橙8,或者黄3+ 青8= 绿11,青5+ 红8= 紫13。这个调配量其实正符合斐波那契数列, 亦即符合黄金分割定理, 因此它所调出来的颜色就比较合适、自然, 看起来给人一种美感。至于两种间色的混合, 三种原色的混合, 间色与黑色的混合, 原色与黑色的混合, 原色与其补色的混合, 这一切所产生的复色, 尽管其中的比例要更为复杂, 但只要找出其各自的符合黄金分割的比例来, 就不难达到令人满意的程度。 黄金分割在优美的音乐和诗歌中同样可以找到。据说,公元前6世纪,古希腊数学家、哲学家毕达哥拉斯,有一天路过一个铁匠铺,被里面清脆悦耳的打铁声吸引住了,凭直觉认定这声音有“秘密”。他走进铺里,仔细测量了铁砧和铁锤的大小,发现它们之间的比例近乎于1∶0.618,回家后,他拿来一根木棒,让他的学生在这根木棒上刻下一个记号,其位置既要使木棒的两端距离不相等,又要使人看上去觉得满意。经多次实验得到一个非常一致的结果,即用C点分割木棒AB,整段AB与长段CB之比,等于长段CB与短段CA之比,毕达哥拉斯接着又发现,把较短的一段放在较长的一段上面,也产生同样的比例。这个故事说明,“黄金分割”最早的发明似乎就与声音有关。 除了在艺术中外,“黄金分割比”在日常生活中也有广泛的应用。例如,根据广泛调查,所有让人感到赏心悦目的矩形,包括电视屏幕、写字台面、书籍、门窗等,其短边与长边之比大多为0.618。甚至连火柴盒、国旗的长宽比例,都恪守0.618比值。在音乐会上,报幕员在舞台上的最佳位置,是舞台宽度的0.618之处;二胡要获得最佳音色,其“千斤”则须放在琴弦长度的0.618处。最有趣的是,在消费领域中也可妙用0.618这个“黄金数”,获得“物美价廉”的效果。据专家介绍,在同一商品有多个品种、多种价值情况下,将高档价格减去低档价格再乘以0.618,即为挑选商品的首选价格。对它的各种神奇的作用和魔力,数学上至今还没有明确的解释,只是发现它屡屡在实际中发挥我们意想不到的作用。内含“黄金分割比”的五角星形状也非常耐人寻味,世界上有将近40个国家(如中国、美国、朝鲜、土耳其、古巴等等)的国旗上上的“星”都是五角形的星。 黄金分割规律还为直接最优化方法的建立提供了依据。优选法是一种求最优化问题的方法,即怎样才能使产量最高、质量最好、消耗最少。数学上最优化问题的解决方法大致分为两类:间接最优化方法和直接最优化方法。间接最优化方法是把研究对象用数学方程表示出来,再用数学方法求最优解。但在许多情况下,对象本身处理不清楚,间接最优化方法就无法使用,于是人们就通过大量试验来寻找最优解。如何安排试验,较快较省地求得最优解,这就是直接最优化方法。如果将实验点定在区间的0.618左右,那么实验的次数将大大减少。实验统计表明,对于一个因素问题,用“0.618法”做16次实验,就可以取得“对分法”做2500次试验所达的效果。1953年,美国的基弗提出“0.618法”获得大量应用,特别在工程设计方面应用最多,成效最佳。 在家具与室内装饰领域,意大利汤玛莎拉家具成功地将“黄金分割”运用到制作当中,达到了一种整体的和谐之美。在汤玛莎拉展厅内您可以看到地柜的长高比,地柜上小相门的长宽比都是黄金分割,对开门的下方设计有一对抽屉,抽屉的长度与柜门的高度以及整个衣柜的宽度与高度之比,也都符合黄金分割定律,这种大的黄金分割套小的黄金分割,使得整体一件家具处处都显得匀称和谐,优美雅致。由带有黄金分割设计的单家具,组合而成的成套家具,其整体的协调性与观赏性,更可以达到和谐的统一。
版权声明: 本站仅提供信息存储空间服务,旨在传递更多信息,不拥有所有权,不承担相关法律责任,不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本网联系的,请发送邮件至 举报,一经查实,本站将立刻删除。