我国黄金期货与黄金股票动态相关性实证研究 黄金期货与黄金股票关系图解视频讲解大全
原标题:我国黄金期货与黄金股票动态相关性实证研究 来源:原创
今年上半年金融市场出现大幅波动,我国黄金期货价格逐渐走高,A股黄金类股票也不断攀升,这说明我国黄金期货与A股黄金类股票有一定相关性。分析黄金期货市场与A股黄金板块相关性,不仅对投资者进行合理资产配置具有参考作用,而且对监管机构进行商品期货市场和股票市场调控、化解金融风险提供理论依据。
虽然黄金本位制崩溃,布雷顿森林体系瓦解,黄金已不充当货币发行的储备物。不过,由于黄金在正常的条件下具有不易被腐蚀、单位价值高、易储藏、易分割等优良特性,黄金被广泛应用于工业领域,是重要的大宗商品。同时,黄金产量有限,价格受到宏观因素影响,与全球经济事件和金融市场波动紧密相关,尤其在黑天鹅事件中表现尤为显著,黄金也可以作为投资品。因此,黄金兼具商品属性与金融属性。
实证检验
模型介绍
随着金融市场的发展,多变量的时间序列模型和方法受到学者关注。其中比较典型的有1988年BollerSlev提出的VECH模型,1990年提出的CCC-MVGARCH模型,1995年恩格尔等提出的BEEK模型。VECH模型在GARCH模型的基础上研究向量波动特性,但由于该方法待估参数过多以及该模型的方差协方差矩阵无法保证有正定性的两大缺陷,未能被学者大量应用。随后的BEEK模型虽然弥补了VECH模型的两个缺陷,但相对于VECH模型经济意义不明确,也在使用上受到一定程度的限制。CCC-MVGARCH模型虽然弥补了上述两个模型的限制——使用较少的估计参数、具有明确的经济意义,但该模型假设的是多个资产之间相关系数恒定,与不同资产相关性随着时间波动的现实情况不符。为克服上述缺陷,Engle和Sheppard在2002年提出了DCC-MVGARCH模型。
DCC-MVGARCH模型即动态条件相关多变量自回归异方差模型,是在CCC模型基础上进行的改进,放松CCC模型中序列相关性恒定为常数的假设,反映出序列间随时间波动的动态关系。DCC-MVGARCH模型是通过改变CCC模型常数矩阵Rt 的假设,对标准化扰动项进行加权平均, 模型可表示为:
Yt=CXt+εt (1)
εt =Ht1/2vt (2)
Ht=Dt1/2RtDt1/2 (3)
(4)(5)在上述模型方程中,Xt、Yt 分别代表解释变量和被解释变量,C为待估计参数矩阵,Ht为误差项εt 为条件协方差矩阵, Dt为条件方差矩阵的对角矩阵,Rt表示条件相关系数矩阵,Pt表示由标准化残差得出的无条件相关系数, 代表标准化后的随机扰动过程。同时,参数λ1和参数 λ2分别代表滞后1期的标准化的残差平方系数( ARCH系数) 和异方差系数( GARCH系数) ,满足前提条件λ1≥0、λ2≥0、0≤λ1+λ2<1。DCC-GARCH模型预测分为两个步骤,一是对每个单变量建立GARCH模型,二是以每个单变量的GARCH模型为基础,预测多元变量之间的相关系数。每个单变量建立GARCH模型的前提是ARCH效应的存在。
样本选取和处理
这里用上海黄金期货主力合约收盘价代表我国黄金期货市场价格。同时,由于中国A股尚无黄金板块指数来衡量A股黄金板块走势,故选取A股黄金板块中流通市值排名前三的上市公司的每日收盘价进行加权平均,作为A股黄金板块指数,其权重为流通市值的比重。样本选取时期为2014年1月1日—2023年7月31日,剔除一些非正常交易的数据后,数据样本为1490个。
此外,上海黄金期货主力合约收盘价令为变量Q,A股黄金板块收盘价令为变量G。为消除异方差,对所有变量取对数,分别为变量LQ、LG。各变量的描述性,见表1。
通过变量描述,可以看出,黄金期货和A股黄金板块均呈非正态分布,尖峰有偏,满足时间序列的尖峰后尾的部分特征。
单位根检验
在实证分析前,为避免计量分析中出现伪回归问题,先对变量进行平稳性检验。若数据在5%的显著性水平下拒绝原假设,则认为该序列是平稳的。
版权声明: 本站仅提供信息存储空间服务,旨在传递更多信息,不拥有所有权,不承担相关法律责任,不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本网联系的,请发送邮件至 举报,一经查实,本站将立刻删除。